Some Equivalent Theorems in Extremal Combinatorics

Jeff Hicks

April 7, 2012

What is Extremal Combinatorics

Extremal Combinatorics is the study of the maximum or minimal behaviors in combinatorial objects

Problems!

In this talk, I will be showing some equivalences between theorems in extremal combinatorics, which are applied to seemingly unrelated problems.

Problems!

In this talk, I will be showing some equivalences between theorems in extremal combinatorics, which are applied to seemingly unrelated problems.

- Plumbing

Problems!

In this talk, I will be showing some equivalences between theorems in extremal combinatorics, which are applied to seemingly unrelated problems.

- Plumbing
- Marraiges

Problems!

In this talk, I will be showing some equivalences between theorems in extremal combinatorics, which are applied to seemingly unrelated problems.

- Plumbing
- Marraiges
- Hard Choices

A Problem with the Pipes

Here's the problem: You have a set of pipes, connecting a source and a target, and each pipe can only carry so much water through it. You want to figure out

A Problem with the Pipes

Here's the problem: You have a set of pipes, connecting a source and a target, and each pipe can only carry so much water through it. You want to figure out

- How much water can flow from the source to the target?

A Problem with the Pipes

Here's the problem: You have a set of pipes, connecting a source and a target, and each pipe can only carry so much water through it. You want to figure out

- How much water can flow from the source to the target?
- Which pipes do you have to cut in order to prevent water from flowing?

Networks for Beginners

Definition

A network is a collection V of vertices and a subset $P \subset V \times V$ of pipes. We have a function $C: P \rightarrow \mathbb{N}$ called the capacity function.

Networks for Beginners

Definition

A network is a collection V of vertices and a subset $P \subset V \times V$ of pipes. We have a function $C: P \rightarrow \mathbb{N}$ called the capacity function.

Figure: Network= Directed graph with Weighted Edges

Networks for Beginners: Flows

Definition

A flow on a network between two points, s, Sink $\in V$ (called the source and target) is a set of numbers on pipes representing amounts of water. It satisfies:

Networks for Beginners: Flows

Definition

A flow on a network between two points, s, Sink $\in V$ (called the source and target) is a set of numbers on pipes representing amounts of water. It satisfies:

- The flow along a pipe is less than the capacity of the pipe

Networks for Beginners: Flows

Definition

A flow on a network between two points, s, Sink $\in V$ (called the source and target) is a set of numbers on pipes representing amounts of water. It satisfies:

- The flow along a pipe is less than the capacity of the pipe
- Total water is conserved, except at the source and target.

Networks for Beginners: Flows

Figure:

We say that the flow between Source and Target is the sum of the flows leaving Source or the sum of the flows entering Target.

Networks for Beginners: Flows

Figure: A possible flow in red.

We say that the flow between Source and Target is the sum of the flows leaving Source or the sum of the flows entering Target.In the above example, the flow between Source and Target is 2.

Maximal Flow

A flow is called maximal if it is the largest possible flow.

Figure:

Maximal Flow

A flow is called maximal if it is the largest possible flow.

Figure: A Maximal Flow of 3

Networks for Beginners: Cuts

Definition

If the removal of a set of pipes H means that there is no flow from s to t, we call H a cut. The capacity of the cut H is the sum of the capacity of the pipes in the cut.

Figure:

Networks for Beginners: Cuts

Definition

If the removal of a set of pipes H means that there is no flow from s to t, we call H a cut. The capacity of the cut H is the sum of the capacity of the pipes in the cut.

Figure: A cut of s and t of capacity 1 .

Networks for Beginners: Cuts

Definition

If the removal of a set of pipes H means that there is no flow from s to t, we call H a cut. The capacity of the cut H is the sum of the capacity of the pipes in the cut.

Figure: A cut of s and t of capacity 1 .

A cut is called minimal if it has the smallest possible capacity.

Figure: A network

Figure: A network a flow of 6

Figure: A network a flow of 6 a cut of 6

Max Flow Min Cut

Max Flow Min Cut (MFMC) is a very powerful Theorem. Let's look at a seemingly unrelated problem.

Math, Marraiges and Matchings

The basic problem is as follows:

Math, Marraiges and Matchings

The basic problem is as follows:

- You are a matchmaker who happens to be a mathematician

Math, Marraiges and Matchings

The basic problem is as follows:

- You are a matchmaker who happens to be a mathematician
- They boys and girls are not so picky, and have given you lists of who they are willing to marry

Math, Marraiges and Matchings

The basic problem is as follows:

- You are a matchmaker who happens to be a mathematician
- They boys and girls are not so picky, and have given you lists of who they are willing to marry
- How many happy couples can you make?

Marriages and Matchings

There are a few criterion we must meet

Marriages and Matchings

There are a few criterion we must meet

- A happy matching is one where everybody who is married is married to someone they are willing to be married to

Marriages and Matchings

There are a few criterion we must meet

- A happy matching is one where everybody who is married is married to someone they are willing to be married to
- A matching is where no guy is married to two girls (or vice versa)

Marriages and Matchings

There are a few criterion we must meet

- A happy matching is one where everybody who is married is married to someone they are willing to be married to
- A matching is where no guy is married to two girls (or vice versa)
Lets make this problem a little more formal.

Graphs: a 101 Crash Course

Definition
 A graph is a collection V of vertices and a subset $E \subset V \times V$ of edges.

Graphs: a 101 Crash Course

Definition

A graph is a collection V of vertices and a subset $E \subset V \times V$ of edges.

Figure: An example of a graph with 4 vertices and 4 edges

Graphs: a 101 Crash Course

Definition

A set of vertices is called an edge cover if every edge in the graph touches a vertex in the set.

Figure: An example of a edge cover

Graphs: a 101 Crash Course

Definition

A set of vertices is called an edge cover if every edge in the graph touches a vertex in the set.

Figure: An example of a edge cover

Graphs: a 101 Crash Course

Definition

A set of edges is called an matching if every edge is disjoint.

Figure: An example of a matching

Graphs: a 101 Crash Course

Definition

A set of edges is called an matching if every edge is disjoint.

Figure: An example of a matching

Graphs: a 101 Crash Course

Definition

A graph is called bipartite it has two parts, and the only edges are those which connect the two parts

Graphs: a 101 Crash Course

Definition

A graph is called bipartite it has two parts, and the only edges are those which connect the two parts

Figure: An example of a bipartite graph

Back To Marriages

We can make a graph out of the Marriage Problem

Back To Marriages

We can make a graph out of the Marriage Problem

Vertices $=$ People

Back To Marriages

We can make a graph out of the Marriage Problem

Vertices $=$ People
Edges $=$ Both people are happy if married

Back To Marriages

We can make a graph out of the Marriage Problem

Vertices $=$ People
Edges $=$ Both people are happy if married
Possible sets of Marriages $=$ Matchings

König's Theorem

Theorem

The size of a maximum matching in the Marriage Problem is equal to the size of a minimal edge cover

Figure: An example of a bipartite graph

König's Theorem

Theorem

The size of a maximum matching in the Marriage Problem is equal to the size of a minimal edge cover

Figure: An example of a bipartite graph and a maximum matching

König's Theorem

Theorem

The size of a maximum matching in the Marriage Problem is equal to the size of a minimal edge cover

Figure: An example of a bipartite graph and a maximum matching and a minimal edge cover

Max Flow = Max Matching

Max Flow = Max Matching
Min Cut = Min Edge Cover

Max Flow = Max Matching
Min Cut = Min Edge Cover

König's theorem

Lets look at an unrelated problem, and see how König's theorem can help us

Some applications of the Marriage Problem

Suppose that I am sorting candy bars by how much I like them and I want to know the following things

Some applications of the Marriage Problem

Suppose that I am sorting candy bars by how much I like them and I want to know the following things

- Largest Set of Incomparable Candy

Some applications of the Marriage Problem

Suppose that I am sorting candy bars by how much I like them and I want to know the following things

- Largest Set of Incomparable Candy
- How many piles of candy bars do I need to sort my candy so that each set is completely ordered

Candy and Hard Choices

Figure: " Incomparable Items"

Candy and Hard Choices

Figure: "Incomparable Items"

Candy and Hard Choices

Figure: "Incomparable Items"
Figure: Each Pile is completely Ordered

A First Look at Posets

Definition

A Partially Ordered Set is a set of objects P with an ordering \leq on the elements that satisfies the following properties for every $a, b, c \in P$

A First Look at Posets

Definition

A Partially Ordered Set is a set of objects P with an ordering \leq on the elements that satisfies the following properties for every $a, b, c \in P$

- (Reflexivity) $a \leq a$

A First Look at Posets

Definition

A Partially Ordered Set is a set of objects P with an ordering \leq on the elements that satisfies the following properties for every $a, b, c \in P$

- (Reflexivity) $a \leq a$
- (Symmetry) If $a \leq b$ and $b \leq a$ then $a=b$

A First Look at Posets

Definition

A Partially Ordered Set is a set of objects P with an ordering \leq on the elements that satisfies the following properties for every $a, b, c \in P$

- (Reflexivity) $a \leq a$
- (Symmetry) If $a \leq b$ and $b \leq a$ then $a=b$
- (Transitivity) If $a \leq b$ and $b \leq c$ then $a \leq c$.

A First Look at Posets

Definition

A Partially Ordered Set is a set of objects P with an ordering \leq on the elements that satisfies the following properties for every $a, b, c \in P$

- (Reflexivity) $a \leq a$
- (Symmetry) If $a \leq b$ and $b \leq a$ then $a=b$
- (Transitivity) If $a \leq b$ and $b \leq c$ then $a \leq c$.

Warning! It is not necessarily the case that $a \leq b$ or $b \leq a$. The items may not be comparable.

A First Look at Posets

Example

A few examples

A First Look at Posets

Example

A few examples

- $\mathbb{Z}, \mathbb{R}, \mathbb{Q}$ with the usual ordering are all posets.

A First Look at Posets

Example

A few examples

- $\mathbb{Z}, \mathbb{R}, \mathbb{Q}$ with the usual ordering are all posets.

A First Look at Posets

Definition

Let P be a poset. A subset $C \subset P$ is a chain is a group of objects which are all comparable i.e. $\forall x, y \in C$ we have that $x \leq y$ or $y \leq x$

A First Look at Posets

Definition

Let P be a poset. A subset $C \subset P$ is a chain is a group of objects which are all comparable i.e. $\forall x, y \in C$ we have that $x \leq y$ or $y \leq x$

Definition

A subset $A \subset P$ is a antichain is a group of objects which are pairwise incomparable.

A First Look at Posets

Definition

Let P be a poset. A subset $C \subset P$ is a chain is a group of objects which are all comparable i.e. $\forall x, y \in C$ we have that $x \leq y$ or $y \leq x$

Definition

A subset $A \subset P$ is a antichain is a group of objects which are pairwise incomparable.

Definition

A collection of chains $\mathcal{C}=C_{1}, C_{2}, C_{3} \ldots$ is called a chain covering of P if every element of P is contained in \mathcal{C}.

Dilworth's Theorem

Theorem
 Smallest Chain Cover = Max Antichain

Dilworth's Theorem

Theorem
 Smallest Chain Cover $=$ Max Antichain

This theorem answers our question on candy bars:

Dilworth's Theorem

Theorem
 Smallest Chain Cover $=$ Max Antichain
 This theorem answers our question on candy bars:
 Smallest Set of Piles $=$ Smallest Chain Cover

Dilworth's Theorem

Theorem

Smallest Chain Cover $=$ Max Antichain
This theorem answers our question on candy bars:
Smallest Set of Piles = Smallest Chain Cover
Maximum number of incomparable Candy Bars $=$ Max Antichain

Candy and Hard Choices

Figure: " Incomparable Items"

Candy and Hard Choices

Figure: "Incomparable Items"

Candy and Hard Choices

Figure: "Incomparable Items"
Figure: Each Pile is completely Ordered

Proof of Dilworth's Theorem By König's Theorem

We create a Bipartite graph.
Vertices $=$ Objects in Poset
Edge between a, b if $a<g b$

Proof of Dilworth's Theorem By König's Theorem

We create a Bipartite graph.
Vertices $=$ Objects in Poset
Edge between a, b if $a<g b$

Let p be the number of elements in the Poset, and m the max matching/min edge cover

Let p be the number of elements in the Poset, and m the max matching/min edge cover

- If 2 vertecies are not in an edge cover, then there cannot be an edge between them.
Max Antichain $=$ Vertices not in Edge cover $=p-m$

Let p be the number of elements in the Poset, and m the max matching/min edge cover

- If 2 vertecies are not in an edge cover, then there cannot be an edge between them.
Max Antichain $=$ Vertices not in Edge cover $=p-m$

Let p be the number of elements in the Poset, and m the max matching/min edge cover

- If 2 vertecies are not in an edge cover, then there cannot be an edge between them.
Max Antichain = Vertices not in Edge cover=p-m
- If a vertex is not bordering a maximum matching, then it is the "top" of a chain
Min Chain Cover $=$ vertices not bordering max matching $=p-m$

Other Equivelences

Other Equivelences

There are actually many more theorems equivelent to these three König's Theorem

Matchings on Bipartite Graphs

Other Equivelences

There are actually many more theorems equivelent to these three König's Theorem
Dilworth's Theorem
Matchings on Bipartite Graphs
Chains and Antichains in Posets

Other Equivelences

There are actually many more theorems equivelent to these three König's Theorem
Dilworth's Theorem
MFMC

Chains and Antichains in Posets
Maxiumum flows and Minimum cuts

Other Equivelences

There are actually many more theorems equivelent to these three König's Theorem
Dilworth's Theorem
MFMC
Menger's Theorem
Matchings on Bipartite Graphs
Chains and Antichains in Posets
Maxiumum flows and Minimum cuts
Disjoint Paths in graphs

Other Equivelences

There are actually many more theorems equivelent to these three

König's Theorem
Dilworth's Theorem
MFMC
Menger's Theorem
Hall's Theorem

Matchings on Bipartite Graphs
Chains and Antichains in Posets
Maxiumum flows and Minimum cuts
Disjoint Paths in graphs
Criteria for matching problems

Other Equivelences

There are actually many more theorems equivelent to these three

König's Theorem
Dilworth's Theorem
MFMC
Menger's Theorem
Hall's Theorem
Tuttes Theorem

Matchings on Bipartite Graphs
Chains and Antichains in Posets
Maxiumum flows and Minimum cuts
Disjoint Paths in graphs
Criteria for matching problems
Perfect Matchings in Graphs

Other Equivelences

There are actually many more theorems equivelent to these three

König's Theorem
Dilworth's Theorem
MFMC
Menger's Theorem
Hall's Theorem
Tuttes Theorem
Birkoff Von Neuman's Theorem

Matchings on Bipartite Graphs
Chains and Antichains in Posets
Maxiumum flows and Minimum cuts
Disjoint Paths in graphs
Criteria for matching problems
Perfect Matchings in Graphs
Doubly Stochastic Matrices

Other Equivelences

There are actually many more theorems equivelent to these three

König's Theorem
Dilworth's Theorem
MFMC
Menger's Theorem
Hall's Theorem
Tuttes Theorem
Birkoff Von Neuman's Theorem
Königs Matrix Theorem

Matchings on Bipartite Graphs
Chains and Antichains in Posets
Maxiumum flows and Minimum cuts
Disjoint Paths in graphs
Criteria for matching problems
Perfect Matchings in Graphs
Doubly Stochastic Matrices
Matrix decompositions

